If the system of linear equations  $2 x + y - z =7$ ; $x-3 y+2 z=1$  ; $x +4 y +\delta z = k$, where $\delta, k \in R$  has infinitely many solutions, then $\delta+ k$ is equal to

  • [JEE MAIN 2022]
  • A

    $-3$

  • B

    $3$

  • C

    $6$

  • D

    $9$

Similar Questions

Let $M$ and $m$ respectively be the maximum and the minimum values of $f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$ Then $M ^4- m ^4$ is equal to :____

  • [JEE MAIN 2025]

Statement $-1$ : The system of linear equations

$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$

$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$

$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$

has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$ 

Statement $-2$ : The equation in $\alpha $

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$

  • [JEE MAIN 2013]

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$is

Evaluate the determinants : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is

  • [JEE MAIN 2019]